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ABSTRACT: Deep learning models for image classification trained on low-quality data (insufficient dataset volume,
unbalanced datasets, ambiguous im- ages) may exhibit surprisingly high values of the performance metrics. However,
explainability may be an issue for such models since their classi- fication decisions may be completely different from human
reasoning. In this paper, four architectures were considered as follows: a custom model with two convolutional layers and
two pooling layers and three models based on EfficientNet B0, Inception V3 and ResNet VV2.50. The models were trained
on a publicly available (Kaggle) image dataset ”Solar Panel Images Clean and Faulty Images” with per-class accuracy values
exceed-ing 0.9. The explainability algorithm LIME was applied for predictions of all models and for each class. For some
classes, the decisions of the models (and especially the custom model) cannot be explained in terms of human reasoning.
Explainability was assessed for predictions made by Inception V3 architecture using the LIME algorithm with the same
parameters. In case of two random images (from the ImageNet classes 486 -” cello” and 657 -”” missile”) the classification
decision of Inception V3 is grounded on features that make perfect sense for human reasoning. How- ever, for ambiguous
images, the inference of Inception V3 seems to rely on underlying associations - groups of object occurring frequently
together with the target object in the same image.
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1.INTRODUCTION explainable  structures, deep neural
Although machine learning and deep learning networks with their various architectures
models (as universal function approximations (Convolutional Neural Networks - CNN,
[1]) outperform many other algorithms in Recurrent Neural Networks - RNN, Long
classification and regression tasks, in general, Short-Term Memory - LSTM, and several
they act like black boxes, in the sense that it more) pro- duce outputs that cannot be
may not always be possible to understand, in explained, i.e. their internal inference
a quantifiable and reproducible way, the processes are neither known to the observer
prediction of such a model. Explainability is nor interpretable by humans, Guidotti et al.
considered one of the four ethical principles [4]. This work will discuss the explainability
for trustworthy Al [2]. Longo et al. [2] of three CNN models for im- age
reviewed the advances in Explainable Al classification, trained on a publicly available,
(XAI) and applications in the real world, low-volume, and imbalanced image dataset.
discussing the current challenges. The LIME (Local Interpretable Model-

The necessity for explainability and agnostic Explanation) algorithm will be
interoperability of Al systems results has applied to the trained models to gain insight
been understood with the emergence and into the pre- diction mechanisms.
deployment of such systems, especially in Explainability is a very useful instrument
decision problems [3]. Unlike, for example, that can shed light on the black-box model
decision trees, which are algorithms with mechanisms for some image classification
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models. In particular, some CNN-based models,
trained on low-volume (and sometimes
unbalanced) datasets, display unusually high-
performance metrics and no over- fitting
during the training process. In such cases,
explainability could reinforce trust in the
predictions of such models, or, conversely,
flag possible underlying issues with such
models.

2.PREVIOUS WORKS

Soiling of photovoltaic panels (PV) causes
significant degradation of the efficiency.
Adekanbi et al. [5] presented a
comprehensive review of soiling caused by
dust on the operation of PVs. The review
focused on the effect of (1) various types of
dust  occurring  naturally and  (2)
environmental conditions that could favor
dust accumulation. Ballestrin et al. [6]
reported daily electrical losses as high as 9%
between February and November 2020 for a
PV system installed in Madrid. The effect of
soiling. The estimation reported in [6] was
based on a database of 238 measurements of
average daily losses of a photovoltaic module
compared to an identical one that was
maintained clean. Soiling of PV panels is a
complex process with a significant random
component and several environmental factors
influencing it in ways not fully understood.
Santhakumari and Sagar [7] conducting a
literature review on studies investigating the
effect of a wide range of environmental
factors (dust, ambient temperature, wind
velocity, humidity, snowfall, hail, and
sandstorms) and the typical defects these
factors incur on PV panels. A quantitative
estimation of the effect of soiling was
presented by Bessa et al. [8], reporting losses
equivalent to 3%-4% of the global energy
yield (2018), with total missed revenues of at
least 3 to 5 billion euros. Cordero et al. [9]
conducted a study on the PV panel economic
losses caused by soiling in various regions in
the Atacama Desert area. Based on the annual
soiling rate, the amount and frequency of the
rainfall, and the cost of cleaning operations,
an optimum cleaning frequency was
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recommended for each site. llse et al. [10]
reviewed the mechanisms of PV panel
soiling, breaking up the soiling process into
several sub-processes that favor particle
deposition and adhesion, as follows: dew
formation, cementation, particle caking, and
capillary aging. Given the impact of PV
faults, various methods have been developed
to identify and classify abnormal operating
conditions. Two main groups of approaches
were identified in the literature [11]: (i)
monitoring of electrical parameters and (ii)
use of thermography images and computer
vision techniques. The development of
artificial intelligence both in terms of
fundamental research, software libraries, and
hardware, deep learning algorithms for the
classification of anomalies from RGB and
thermographic images become increasingly
accurate and efficient. Ettaleby et al. [12]
proposed a hybrid model combining Support
Vector Machine (SVM) and Convolutional
Neural Networks (CNN) to classify PV
faults based on electroluminescence images
from three classes (normal, cracked, and
corroded). The architecture of the model was
based on VGG16 (the feature extraction
component). The actual classification was
implemented by means of SVM. Two
datasets were used: D1 with 2624 (300x300)
electroluminescence  images, manually
labeled by a human expert; D2 with 1028
(250x250) images. The authors reported an
accuracy of 99.49%, however, some
important details such as class imbalance, the
volume of the training/test sets and learning
curves were not presented. A comprehensive
review on photo- voltaic systems fault
detection was conducted by Hong et al. [13].
The review discusses a significant number of
studies employing deep learning algorithms,
however, only one study - Sairam et al.
[14] - integrated explainability into a model
that could be deployed on edge devices to
assist the field personnel in understanding
the PV fault causes. The structure of the
model consisted of a base model built on an
Irradiance-based three-diode model (an
electrical model of the photovoltaic cell) and
XGBoost. The explainability component was
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implemented using LIME - Local
Interpretable Model-agnostic Explanations..
Harikumar et al. [15] used a dataset
consisting of fetal screening ultrasound
images (9308 RGB and gray scale images,
five classes) and a custom CNN architecture
to develop a model to predict the presence of
some maternal and fetal anatomical parts.
LIME algorithm was used to explain the
outputs of the CNN model. Inessence, LIME
pointed out the region of the image
contributing to the highest extent to a
particular predicted class. The idea put
forward in this work is that an explainability
study is highly required for some deep
learning models, especially when trained on
low-volume datasets. Although such models

can exhibit high values of the performance
metrics, their explainability in terms of
human understanding is low.

3.MATERIALS AND METHODS

A publicly available (Kaggle) image dataset
”Solar Panel Images Clean and Faulty
Images” with the classes and number of
instances in each class presented in Table 1 was
used to train the models. The dataset consists of
images scrapped from the internet with various
resolutions and file formats.

A custom CNN model was considered as a
baseline with the architecture presented in
Figure 1. Three architectures, EfficientNet
B0, ResNet v2.50 and

Clean| Dusty Bird drop

Electrical fault

Physical fault | Show

192 194 191

104 70 124

Table 1: Content of the dataset.

Inception v3 (for all architectures, model
variant feature-vector was used). All images
were resized to 224x224 and the dataset was

Crarpvndational_Lrpw_1_LE 3 Hel LD jimpar [T iMoo, I14, I24. 31]
1
I Ly oarpen- | [{Menne, 228 I3 3]

I Coaredetioral lepwe 1 13 1 Hel L) [Tg e I [ el a1
&
[y LA Mo, IiE die. L0
| MaxPocd_Lepes 1 2 valid | et | (Booren, 222 223 25 |
| MaaPoeding 7 cufpust | [Morw, 110, 100, 335 |

randomly broken down into train and test
subsets (80/20). The test set was used for
validation during the training process.

Copryabaiesal Lo 2 1T 3 Relll | ioypes (Mo, 110 10N, 35

i 20 oilpaE | [Peon, 106, 1099, 325

MusPod e T2 valkdl | g | (Pone, 108, 105, 1)
MasPocdisgZD L o, 54, 54, 32}

| Prsties_faver | impue | dPéome, %, S, 3T |

e, LT

a
Flagen [- 5~ 0}

l

Ohtpid Lier_ 6 Solivias | gl e, 31T
L L L
Derrer LTt { P, )

featre_extraction_layer_inpat | ingest [iMone, 224, 224, 33]
Erpun Lavyver output: | [[Nooe, 224, X34, 3]
L
T feameEe AT Ly el | Mo, JX, 224 ) |
Rl ayes et [ = o e 1) |
L
1 fattem_2 | input: | (Nooe, 1280)
Flasten [ EiET] [ P, | 2ED0)
T
¥ demse_2 | impuot: | (Bome, 1580
Dense | outpot: | (Mone, 2585)
- CARpRE_ ke i [ P, 250)
Daimrrian [ EiET] i N, &)

Figure 1: The custom model (left) and EfficienNet, Inception and ResNet architectures
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All models were compiled using Adam
optimizer with the default parameters and
categorical cross entropy as loss function.
The training curves for the EfficienNet BO
architecture are presented in Figure 2. The
confusion matrices (using the predictions on
the test set) are presented in Figure 3. All

models predict correctly 100% of the
instances from the classes ”Electrical
damage” and “Snow-Covered”. For the

models based on Inception and ResNet
models, the most frequent confusion occurs
for the class ”Dusty” (predicted as ”Clean”).
Another frequently occurring confusion is for
the class ”Physical-Damage”, for which
Inception and ResNet based models falsely
predict ’Clean” and ”Bird- drop” classes.

The LIME algorithm will be employed to
understand how the four models generate
predictions. LIME has different variants
depending on the data type. For image data,
the first step of the algorithm is to segment
the image into super pixels (defined as several
adjacent pixels having RGB values close to
each other). The super pixel regions can be
turned on or off, setting the RGB values to a
specific color [16]. LIME interpretation starts
with a correct prediction of the trained model.
Then a new data set is created by randomly
perturbing the original image (for example,
by turning on and off random superpixel
regions). A local (in the sense that it is
created based on the initial image considered)
model is fitted taking as input the computed
superpixels. Weights of the im- ages, close to
the original image are applied to quantify the
importance of the perturbed images. The
importance of each perturbed image is
determined by means of a distance metric that
assesses “how far” each perturbed image is
from the original image (the one for which all
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superpixel regions are turned on). The
distance metric is calculated and assigned to
each image in the perturbed dataset. The local
model is then trained with the perturbed
images, predictions and weights. A factor for
each superpixel is calculated describing the
effect of the superpixel on the right class
prediction. The values of these factors are
ordered to sort out the superpixel regions that
contribute the most significantly to the model
prediction. The approach used in this study is
the following: first, the four trained models
(as described in the previous section) will be
used to generate a prediction. Then LIME
algorithm will be used with each of the four
models to generate the interpretable maps of
the image. In the end, Inception V3 trained
with Imagenet was be used with random
images to demonstrate differences in the
interpretability maps. The LIME algorithm
was implemented as follows: the quickshift
algorithm from the scikit-image library was
used to segment the original image. The
quickshift parameters kernel size, maximum
(bottom right) confusion matrix. True class
on the vertical axis, predicted class on the
horizontal axis distance, and ratio were 4,
Npert=200, and 0.2 respectively. Then 200
perturbed images were generated randomly
(drawing samples from a binomial distribution
with a probability 0.5) by selecting
superpixel patches. A set of predictions
were generated using each trained model
and the set of perturbed images as input.
The distance values di between the original
image and the perturbed images was
determined by using the scikitlearn metric
pairwise distance with the metric parameter
cosine. The weight assigned to each perturbed
image were calculated using a kernel
function as follows:
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Figure 2: Custom model (top left), EfficientNet BO (top right), Inception V3 (bottom left)
and ResNet V2.50 (bottom right) training curves
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Figure 3: Custom model (top left), EfficientNet (top right), Inception (bottom left) and
ResNet BO

d?
wi= |exp—|—
<k2>

in which k is the kernel size, for which the
value 0.25 was used. A surrogate model

(Hnear regression) was fitted using the
perturbations and the corresponding
predictions maximum probability (the
maximum value was selected from the six-
element prediction vector). The sample
weight parameter of the Linear Regression
model was set to wi. The first four features
will be used to create the features map.

Figure 4: Interpretability maps: leftmost column: original random image from each class.
Next columns: interpretability maps for the custom model, EfficientNet, Inception and
ResNet-based models, respectively
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4.DISCUSSION

In Figure 4 several random images from each
class were selected and LIME algorithm was
applied to identify the top four features that
determine the models to predict a certain
class. Before applying the LIME algorithm,
it was ensured that each model predicts
correctly the true class. For the classes ’Bird-
drop” and ”Clean” the top four features that
contribute to the model decision are similar in
appearance for all models discussed in this
paper. Although Inception and ResNet have
a higher rate of failures for the class ”Bird-
drop”, as shown in Figure 3, they still
consider correctly the relevant features of the
images. It can be argued though that the
image area is almost fully occupied by the tar-
get object and the model has little room for
misinterpreting the image content. This
hypothesis seems to be confirmed for the
class ”Dusty”. The image area contains other
object than the target object (dust-covered PV
panel), such as clear sky and dry, exposed soil
patches. Although all models include the
target object in the feature set used to decide
the class, they also consider the exposed soil
patches as elements that point to the “Dusty”
class, which is rather counter intuitive for a
human. However, although it is far fetched,
one could argue that PV panels installed in
areas with dry and exposed soil have more
chances to get dusty. For the image in the
class “Electrical damage”, although all
models predict correctly the class, only
EffcientNet, Inception and ResNet consider
correctly the specific feature for this class.
The custom model prediction, al- though
correct, has no intuitive grounds for a human.
Inception and ResNet identify successfully
the specific feature for the class Physical
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Damage” while the custom model and
EfficientNet fail to include their decision on
the main feature that describes this particular
class. For the class ”Snow-Covered” all
models identify correctly the defining
features for this particular class. However,
EfficienNet includes amongst its top features
an image patch containing a clean area.

In order to understand the differences in terms
of explainability between the four models
considered in this paper (trained on a low-
volume and wunbalanced dataset), the
Inception V3 architecture trained on
ImageNet will be used to make predictions on
a couple of random classes and the results of
the LIME algorithm will be discussed. First,
a random image from the class 657
(missile”) was collected from the public
internet (search term missile”, only images).
The architecture Inception V3 was used to
make predictions, resulting the following
classes and corresponding probabilities:
missile: 0.645 projectile: 0.314 cannon:
0.00141 tank: 0.00054 The original image,
the superpixel segmented and a random
perturbed image are presented in Figure 5
Applying the LIME algorithm and selecting
successively the first top feature only, then
the first two and lastly the first three features,
the feature maps presented in Figure 6 are
obtained. The results from another class (486
- cello, violoncello”) are presented in Figure
7. The predicted classes for the target image
are as follows: ”cello”: 0.871, ”’stage™: 0.013,

?drum”: 0.002. The top features that
determined the model prediction are
presented in Figure 8

In  both cases, the LIME algorithm

demonstrates that Inception V3 with
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Figure 5: Target image from the class ”missile”, segmented image and
one random perturbed image

Figure 6: Target image from the class ”missile”, top three features used in
the model decision

Figure 7: Target image from the class ”cello”, segmented image and one
random perturbed image
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Figure 8: Target image from the class ”cello”, top three features used in
the model decision

ImageNet weights spots correctly the top
three defining features for the two images
processed in this paper. An interesting
occurrence can be spotted in the feature map
for the class ”missile”. The third feature the
model considers in its decision is a patch of
clear sky, which, from human perspective,
has nothing to do with the target object (a
missile). This is possibly the result of an
association the model infers during the
training process, when some objects are

frequently present in the image together with
the target object (in this case, sky is often
associated with missiles). To further
investigate this phenomenon, a new image
(more difficult to classify) from the class
”cello, violoncello” is considered. For the
original image presented in Figure 9,
Inception V3 predicts the following classes:
“cello”: 0.518, ”violin: 0.381,

”microphone”: 0.0245.

Figure 9: Target image from the class ”cello”, segmented image and one random perturbed

The original, segmented and a random
perturbed image are presented in Figure 9
The top features used in the model decision
are presented in Figure 10. In the case of this
particular image, it becomes clear that some

image

sort of underlying association was generated
during the training process since the features
displayed in Figure 10 have nothing (from a
human perspective) in common with the
target object.

Figure 10: Target image from Figure 9, top three features (from left to
right) used in the model decision

45



Annals of the ,,Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 3/2024

5.CONCLUSIONS

Explainability is an extremely useful
instrument in assessing the classification
algorithms. In this paper, the explainability
for several image classification mod- els (a
custom model and feature vector for
EfficientNet BO, Inception V3 and ResNet
architectures) was assessed by means of
LIME algorithm. A low-volume, unbalanced
six-class dataset was used to train the models,
which exhibited sat- isfactory values of the
performance metrics. It was found that
explainability varies, depending both on the
class and model. For some classes, all models
(especially the custom model) ground their
decisions on features that are not
understandable in terms of human reasoning.
In order to get some insight into what causes
this variability in explainability, the Inception
V3 architecture with the weights for
ImageNet was used to predict the class for
some images. It was found that for sharply
defined images, Inception V3 identifies
correctly andgrounds its decision on the most
specific features of the target image (in
Figure6 the missile body and the jet and in
Figure 8 the lower part of the cello body and
the tailpiece). In the case of ambiguous
images, the decision of the model (the
prediction is still correct, with the highest
probability for the true class) seems to be
based on associations inferred during the
training. An interpre- tation of the
phenomenon observed in Figure 10 is
proposed as follows: since the individual
depicted in Figure 9 is the distinguished
cellist Mischa Maisky (link to Wikipedia web
page), it is plausible that images in the
training dataset labeled as belonging to the
“cello” class may have featured him. The
Inception V3 model may, therefore, have
inadvertently  associated certain  visual
features of Maisky with the “cello” class,
potentially due to his frequent representation
in connection with the instrument. Another
perspective considers that other notable
cellists may also have been present in the
training dataset, yet this specific image’s
defining characteristic may be the highly

distinctive  texture and arrangement of
Maisky’s hair, which could be a unique
identifier. Future studies could explore this
hypothesis by (i) experimenting with images
of indi- viduals presented with the target
object (the cello) and (ii) by testing a range
of Maisky’s images, particularly those where
he appears alongside the instrument. This
could help clarify the model’s tendency to
associate personal attributes with specific
object classifications, thus contributing to
understanding biases in image recognition
systems
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