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ABSTRACT: Deep learning models for image classification trained on low-quality data (insufficient dataset volume, 

unbalanced datasets, ambiguous im- ages) may exhibit surprisingly high values of the performance metrics. However, 

explainability may be an issue for such models since their classi- fication decisions may be completely different from human 

reasoning. In this paper, four architectures were considered as follows: a custom model with two convolutional layers and 

two pooling layers and three models based on EfficientNet B0, Inception V3 and ResNet V2.50. The models were trained 

on a publicly available (Kaggle) image dataset ”Solar Panel Images Clean and Faulty Images” with per-class accuracy values 

exceed-ing 0.9. The explainability algorithm LIME was applied for predictions of all models and for each class. For some 

classes, the decisions of the models (and especially the custom model) cannot be explained in terms of human reasoning. 

Explainability was assessed for predictions made by Inception V3 architecture using the LIME algorithm with the same 

parameters. In case of two random images (from the ImageNet classes 486 -” cello” and 657 -” missile”) the classification 

decision of Inception V3 is grounded on features that make perfect sense for human reasoning. How- ever, for ambiguous 

images, the inference of Inception V3 seems to rely on underlying associations - groups of object occurring frequently 

together with the target object in the same image. 

 
Key-Words: models, algorithm, function, images. 

 

1.INTRODUCTION 
Although machine learning and deep learning 
models (as universal function approximations 
[1]) outperform many other algorithms in 
classification and regression tasks, in general, 
they act like black boxes, in the sense that it 
may not always be possible to understand, in 
a quantifiable and reproducible way, the 
prediction of such a model. Explainability is 
considered one of the four ethical principles 
for trustworthy AI [2]. Longo et al. [2] 
reviewed the advances in Explainable AI 
(XAI) and applications in the real world, 
discussing the current challenges. 

The necessity for explainability and 
interoperability of AI systems results has 
been understood with the emergence and 
deployment of such systems, especially in 
decision problems [3]. Unlike, for example, 
decision trees, which are algorithms with 

explainable structures, deep neural 
networks with their various architectures 
(Convolutional Neural Networks - CNN, 
Recurrent Neural Networks - RNN, Long 
Short-Term Memory - LSTM, and several 
more) pro- duce outputs that cannot be 
explained, i.e. their internal inference 
processes are neither known to the observer 
nor interpretable by humans, Guidotti et al. 
[4]. This work will discuss the explainability 
of three CNN models for im- age 
classification, trained on a publicly available, 
low-volume, and imbalanced image dataset. 
The LIME (Local Interpretable Model-
agnostic Explanation) algorithm will be 
applied to the trained models to gain insight 
into the pre- diction mechanisms. 
Explainability is a very useful instrument 
that can shed light on the black-box model 
mechanisms for some image classification 
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models. In particular, some CNN-based models, 
trained on low-volume (and sometimes 
unbalanced) datasets, display unusually high-
performance metrics and no over- fitting 
during the training process. In such cases, 
explainability could reinforce trust in the 
predictions of such models, or, conversely, 
flag possible underlying issues with such 
models. 
 

2.PREVIOUS WORKS 

Soiling of photovoltaic panels (PV) causes 
significant degradation of the efficiency. 
Adekanbi et al. [5] presented a 
comprehensive review of soiling caused by 
dust on the operation of PVs. The review 
focused on the effect of (1) various types of 
dust occurring naturally and (2) 
environmental conditions that could favor 
dust accumulation. Ballestrin et al. [6] 
reported daily electrical losses as high as 9% 
between February and November 2020 for a 
PV system installed in Madrid. The effect of 
soiling. The estimation reported in [6] was 
based on a database of 238 measurements of 
average daily losses of a photovoltaic module 
compared to an identical one that was 
maintained clean. Soiling of PV panels is a 
complex process with a significant random 
component and several environmental factors 
influencing it in ways not fully understood. 
Santhakumari and Sagar [7] conducting a 
literature review on studies investigating the 
effect of a wide range of environmental 
factors (dust, ambient temperature, wind 
velocity, humidity, snowfall, hail, and 
sandstorms) and the typical defects these 
factors incur on PV panels. A quantitative 
estimation of the effect of soiling was 
presented by Bessa et al. [8], reporting losses 
equivalent to 3%–4% of the global energy 
yield (2018), with total missed revenues of at 
least 3 to 5 billion euros. Cordero et al. [9] 
conducted a study on the PV panel economic 
losses caused by soiling in various regions in 
the Atacama Desert area. Based on the annual 
soiling rate, the amount and frequency of the 
rainfall, and the cost of cleaning operations, 
an optimum cleaning frequency was 

recommended for each site. Ilse et al. [10] 
reviewed the mechanisms of PV panel 
soiling, breaking up the soiling process into 
several sub-processes that favor particle 
deposition and adhesion, as follows: dew 
formation, cementation, particle caking, and 
capillary aging. Given the impact of PV 
faults, various methods have been developed 
to identify and classify abnormal operating 
conditions. Two main groups of approaches 
were identified in the literature [11]: (i) 
monitoring of electrical parameters and (ii) 
use of thermography images and computer 
vision techniques. The development of 
artificial intelligence both in terms of 
fundamental research, software libraries, and 
hardware, deep learning algorithms for the 
classification of anomalies from RGB and 
thermographic images become increasingly 
accurate and efficient. Ettaleby et al. [12] 
proposed a hybrid model combining Support 
Vector Machine (SVM) and Convolutional 
Neural Networks (CNN) to classify PV 
faults based on electroluminescence images 
from three classes (normal, cracked, and 
corroded). The architecture of the model was 
based on VGG16 (the feature extraction 
component). The actual classification was 
implemented by means of SVM. Two 
datasets were used: D1 with 2624 (300x300) 
electroluminescence images, manually 
labeled by a human expert; D2 with 1028 
(250x250) images. The authors reported an 
accuracy of 99.49%, however, some 
important details such as class imbalance, the 
volume of the training/test sets and learning 
curves were not presented. A comprehensive 
review on photo- voltaic systems fault 
detection was conducted by Hong et al. [13]. 
The review discusses a significant number of 
studies employing deep learning algorithms, 
however, only one study - Sairam et al. 
[14] - integrated explainability into a model 
that could be deployed on edge devices to 
assist the field personnel in understanding 
the PV fault causes. The structure of the 
model consisted of a base model built on an 
Irradiance-based three-diode model (an 
electrical model of the photovoltaic cell) and 
XGBoost. The explainability component was 
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implemented using LIME - Local 
Interpretable Model-agnostic Explanations.. 
Harikumar et al. [15] used a dataset 
consisting of fetal screening ultrasound 
images (9308 RGB and gray scale images, 
five classes) and a custom CNN architecture 
to develop a model to predict the presence of 
some maternal and fetal anatomical parts. 
LIME algorithm was used to explain the 
outputs of the CNN model. In essence, LIME 
pointed out the region of the image 
contributing to the highest extent to a 
particular predicted class. The idea put 
forward in this work is that an explainability 
study is highly required for some deep 
learning models, especially when trained on 
low-volume datasets. Although such models 

can exhibit high values of the performance 
metrics, their explainability in terms of 
human understanding is low. 

3.MATERIALS AND METHODS 

A publicly available (Kaggle) image dataset 
”Solar Panel Images Clean and Faulty 
Images” with the classes and number of 
instances in each class presented in Table 1 was 
used to train the models. The dataset consists of 
images scrapped from the internet with various 
resolutions and file formats. 

A custom CNN model was considered as a 
baseline with the architecture presented in 
Figure 1. Three architectures, EfficientNet 
B0, ResNet v2.50 and 

 

 
Clean Dusty Bird drop Electrical fault Physical fault Snow 

192 194 191 104 70 124 

Table 1: Content of the dataset. 

 
Inception v3 (for all architectures, model 
variant feature-vector was used). All images 
were resized to 224x224 and the dataset was 

randomly broken down into train and test 
subsets (80/20). The test set was used for 
validation during the training process. 

 

Figure 1: The custom model (left) and EfficienNet, Inception and ResNet architectures 

(right) 
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All models were compiled using Adam 
optimizer with the default parameters and 
categorical cross entropy as loss function. 
The training curves for the EfficienNet B0 
architecture are presented in Figure 2. The 
confusion matrices (using the predictions on 
the test set) are presented in Figure 3. All 
models predict correctly 100% of the 
instances from the classes ”Electrical 
damage” and ”Snow-Covered”. For the 
models based on Inception and ResNet 
models, the most frequent confusion occurs 
for the class ”Dusty” (predicted as ”Clean”). 
Another frequently occurring confusion is for 
the class ”Physical-Damage”, for which 
Inception and ResNet based models falsely 
predict ”Clean” and ”Bird- drop” classes. 
The LIME algorithm will be employed to 
understand how the four models generate 
predictions. LIME has different variants 
depending on the data type. For image data, 
the first step of the algorithm is to segment 
the image into super pixels (defined as several 
adjacent pixels having RGB values close to 
each other). The super pixel regions can be 
turned on or off, setting the RGB values to a 
specific color [16]. LIME interpretation starts 
with a correct prediction of the trained model. 
Then a new data set is created by randomly 
perturbing the original image (for example, 
by turning on and off random superpixel 
regions). A local (in the sense that it is 
created based on the initial image considered) 
model is fitted taking as input the computed 
superpixels. Weights of the im- ages, close to 
the original image are applied to quantify the 
importance of the perturbed images. The 
importance of each perturbed image is 
determined by means of a distance metric that 
assesses ”how far” each perturbed image is 
from the original image (the one for which all 

superpixel regions are turned on). The 
distance metric is calculated and assigned to 
each image in the perturbed dataset. The local 
model is then trained with the perturbed 
images, predictions and weights. A factor for 
each superpixel is calculated describing the 
effect of the superpixel on the right class 
prediction. The values of these factors are 
ordered to sort out the superpixel regions that 
contribute the most significantly to the model 
prediction. The approach used in this study is 
the following: first, the four trained models 
(as described in the previous section) will be 
used to generate a prediction. Then LIME 
algorithm will be used with each of the four 
models to generate the interpretable maps of 
the image. In the end, Inception V3 trained 
with Imagenet was be used with random 
images to demonstrate differences in the 
interpretability maps. The LIME algorithm 
was implemented as follows: the quickshift 
algorithm from the scikit-image library was 
used to segment the original image. The 
quickshift parameters kernel size, maximum 
(bottom right) confusion matrix. True class 
on the vertical axis, predicted class on the 
horizontal axis distance, and ratio were 4, 
Npert=200, and 0.2 respectively. Then 200 
perturbed images were generated randomly 
(drawing samples from a binomial distribution 
with a probability 0.5) by selecting 
superpixel patches. A set of predictions 
were generated using each trained model 
and the set of perturbed images as input. 
The distance values di between the original 
image and the perturbed images was 
determined by using the scikitlearn metric 
pairwise distance with the metric parameter 
cosine. The weight assigned to each perturbed 
image were calculated using a kernel 
function as follows: 

40 
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Figure 2: Custom model (top left), EfficientNet B0 (top right), Inception V3 (bottom left) 

and ResNet V2.50 (bottom right) training curves  
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Figure 3: Custom model (top left), EfficientNet (top right), Inception (bottom left) and 

ResNet B0 

𝑤𝑖 = √𝑒𝑥𝑝− (
𝑑𝑖
2

𝑘
2
) 

in which k is the kernel size, for which the 
value 0.25 was used. A surrogate model 

(linear regression) was fitted using the 
perturbations and the corresponding 
predictions maximum probability (the 
maximum value was selected from the six-
element prediction vector). The sample 
weight parameter of the Linear Regression 
model was set to wi. The first four features 
will be used to create the features map. 

 

Figure 4: Interpretability maps: leftmost column: original random image from each class. 

Next columns: interpretability maps for the custom model, EfficientNet, Inception and 

ResNet-based models, respectively 
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4.DISCUSSION 

In Figure 4 several random images from each 
class were selected and LIME algorithm was 
applied to identify the top four features that 
determine the models to predict a certain 
class. Before applying the LIME algorithm, 
it was ensured that each model predicts 
correctly the true class. For the classes ”Bird-
drop” and ”Clean” the top four features that 
contribute to the model decision are similar in 
appearance for all models discussed in this 
paper. Although Inception and ResNet have 
a higher rate of failures for the class ”Bird-
drop”, as shown in Figure 3, they still 
consider correctly the relevant features of the 
images. It can be argued though that the 
image area is almost fully occupied by the tar- 
get object and the model has little room for 
misinterpreting the image content. This 
hypothesis seems to be confirmed for the 
class ”Dusty”. The image area contains other 
object than the target object (dust-covered PV 
panel), such as clear sky and dry, exposed soil 
patches. Although all models include the 
target object in the feature set used to decide 
the class, they also consider the exposed soil 
patches as elements that point to the ”Dusty” 
class, which is rather counter intuitive for a 
human. However, although it is far fetched, 
one could argue that PV panels installed in 
areas with dry and exposed soil have more 
chances to get dusty. For the image in the 
class ”Electrical damage”, although all 
models predict correctly the class, only 
EffcientNet, Inception and ResNet consider 
correctly the specific feature for this class. 
The custom model prediction, al- though 
correct, has no intuitive grounds for a human. 
Inception and ResNet identify successfully 
the specific feature for the class ”Physical 

Damage” while the custom model and 
EfficientNet fail to include their decision on 
the main feature that describes this particular 
class. For the class ”Snow-Covered” all 
models identify correctly the defining 
features for this particular class. However, 
EfficienNet includes amongst its top features 
an image patch containing a clean area. 
In order to understand the differences in terms 
of explainability between the four models 
considered in this paper (trained on a low-
volume and unbalanced dataset), the 
Inception V3 architecture trained on 
ImageNet will be used to make predictions on 
a couple of random classes and the results of 
the LIME algorithm will be discussed. First, 
a random image from the class 657 
(”missile”) was collected from the public 
internet (search term ”missile”, only images). 
The architecture Inception V3 was used to 
make predictions, resulting the following 
classes and corresponding probabilities: 
missile: 0.645 projectile: 0.314 cannon: 
0.00141 tank: 0.00054 The original image, 
the superpixel segmented and a random 
perturbed image are presented in Figure 5 
Applying the LIME algorithm and selecting 
successively the first top feature only, then 
the first two and lastly the first three features, 
the feature maps presented in Figure 6 are 
obtained. The results from another class (486 
- ”cello, violoncello”) are presented in Figure 
7. The predicted classes for the target image 
are as follows: ”cello”: 0.871, ”stage”: 0.013, 
”drum”: 0.002. The top features that 
determined the model prediction are 
presented in Figure 8 
In both cases, the LIME algorithm 
demonstrates that Inception V3 with 
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Figure 5: Target image from the class ”missile”, segmented image and 

one random perturbed image 

 
Figure 6: Target image from the class ”missile”, top three features used in 

the model decision 

. 

 

Figure 7: Target image from the class ”cello”, segmented image and one 

random perturbed image 
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Figure 8: Target image from the class ”cello”, top three features used in 

the model decision 

 

ImageNet weights spots correctly the top 
three defining features for the two images 
processed in this paper. An interesting 
occurrence can be spotted in the feature map 
for the class ”missile”. The third feature the 
model considers in its decision is a patch of 
clear sky, which, from human perspective, 
has nothing to do with the target object (a 
missile). This is possibly the result of an 
association the model infers during the 
training process, when some objects are 

frequently present in the image together with 
the target object (in this case, sky is often 
associated with missiles). To further 
investigate this phenomenon, a new image 
(more difficult to classify) from the class 
”cello, violoncello” is considered. For the 
original image presented in Figure 9, 
Inception V3 predicts the following classes: 
”cello”: 0.518, ”violin”: 0.381, 
”microphone”: 0.0245.  

 
Figure 9: Target image from the class ”cello”, segmented image and one random perturbed 

image 

The original, segmented and a random 
perturbed image are presented in Figure 9 
The top features used in the model decision 
are presented in Figure 10. In the case of this 
particular image, it becomes clear that some 

sort of underlying association was generated 
during the training process since the features 
displayed in Figure 10 have nothing (from a 
human perspective) in common with the 
target object. 

 

Figure 10: Target image from Figure 9, top three features (from left to 

right) used in the model decision 
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5.CONCLUSIONS 

Explainability is an extremely useful 
instrument in assessing the classification 
algorithms. In this paper, the explainability 
for several image classification mod- els (a 
custom model and feature vector for 
EfficientNet B0, Inception V3 and ResNet 
architectures) was assessed by means of 
LIME algorithm. A low-volume, unbalanced 
six-class dataset was used to train the models, 
which exhibited sat- isfactory values of the 
performance metrics. It was found that 
explainability varies, depending both on the 
class and model. For some classes, all models 
(especially the custom model) ground their 
decisions on features that are not 
understandable in terms of human reasoning. 
In order to get some insight into what causes 
this variability in explainability, the Inception 
V3 architecture with the weights for 
ImageNet was used to predict the class for 
some images. It was found that for sharply 
defined images, Inception V3 identifies 
correctly and grounds its decision on the most 
specific features of the target image (in 
Figure 6 the missile body and the jet and in 
Figure 8 the lower part of the cello body and 
the tailpiece). In the case of ambiguous 
images, the decision of the model (the 
prediction is still correct, with the highest 
probability for the true class) seems to be 
based on associations inferred during the 
training. An interpre- tation of the 
phenomenon observed in Figure 10 is 
proposed as follows: since the individual 
depicted in Figure 9 is the distinguished 
cellist Mischa Maisky (link to Wikipedia web 
page), it is plausible that images in the 
training dataset labeled as belonging to the 
“cello” class may have featured him. The 
Inception V3 model may, therefore, have 
inadvertently associated certain visual 
features of Maisky with the “cello” class, 
potentially due to his frequent representation 
in connection with the instrument. Another 
perspective considers that other notable 
cellists may also have been present in the 
training dataset, yet this specific image’s 
defining characteristic may be the  highly  

distinctive  texture and arrangement of 
Maisky’s hair, which could be a unique 
identifier. Future studies could explore this 
hypothesis by (i) experimenting with images 
of indi- viduals presented with the target 
object (the cello) and (ii) by testing a range 
of Maisky’s images, particularly those where 
he appears alongside the instrument. This 
could help clarify the model’s tendency to 
associate personal attributes with specific 
object classifications, thus contributing to 
understanding biases in image recognition 
systems 

REFERENCES 
[1] K. Hornik, M. Stinchcombe, and H. 

White, “Multilayer feedforward net- 

works are universal approximators,” 

Neural Networks, vol. 2, no. 5, pp. 359– 

366, 1989. 

[2] L. Longo, M. Brcic, F. Cabitza, J. Choi, 

R. Confalonieri, J. D. Ser, R. Guidotti, Y. 

Hayashi, F. Herrera, A. Holzinger, R. 

Jiang, H. Khosravi, F. Lecue, G. Malgieri, 

A. P´aez, W. Samek, J. Schneider, T. 

Speith, and S. Stumpf, “Explainable 

artificial intelligence (xai) 2.0: A 

manifesto of open challenges and 

interdisciplinary research directions,” 

Information Fusion, vol. 106, p. 102301, 

2024. 

[3] F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. 

Zhao, and J. Zhu, “Explainable ai: A brief 

survey on history, research areas, 

approaches and challenges,” in Natural 

Language Processing and Chinese 

Computing (J. Tang, M.-Y. Kan, D. Zhao, 

S. Li, and H. Zan, eds.), (Cham), pp. 563–

574, Springer International Publishing, 

2019. 

[4] R. Guidotti, A. Monreale, S. Ruggieri, F. 

Turini, D. Pedreschi, and F. Giannotti, “A 

survey of methods for explaining black 

box models,” 2018. 

[5] M. L. Adekanbi, E. S. Alaba, T. J. John, 

T. D. Tundealao, and T. I. Banji, “Soiling 

loss in solar systems: A review of its 

effect on solar energy efficiency and 

46 

https://en.wikipedia.org/wiki/Mischa_Maisky
https://en.wikipedia.org/wiki/Mischa_Maisky


Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 3/2024 

41 

 

mitigation techniques,” Cleaner Energy 

Systems, vol. 7, p. 100094, 2024. 

[6] J. Ballestr´ın, J. Polo, N. Mart´ın-

Chivelet, J. Barbero, E. Carra, J. Alonso- 

Montesinos, and A. Marzo, “Soiling 

forecasting of solar plants: A combined 

heuristic approach and autoregressive 

model,” Energy, vol. 239, p. 122442, 

2022. 

[7] M. Santhakumari and N. Sagar, “A review 

of the environmental factors degrading 

the performance of silicon wafer-based 

photovoltaic modules: Failure detection 

methods and essential mitigation 

techniques,” Renewable and Sustainable 

Energy Reviews, vol. 110, pp. 83–100, 

2019. 

[8] J. G. Bessa, L. Micheli, F. Almonacid, and 

E. F. Fern´andez, “Monitoring 

photovoltaic soiling: assessment, 

challenges, and perspectives of current 

and potential strategies,” iScience, vol. 

24, no. 3, p. 102165, 2021. 

[9] R. R. Cordero, A. Damiani, D. Laroze, S. 

MacDonell, J. Jorquera, E. Sepu´lveda, S. 

Feron, P. Llanillo, F. Labbe, J. Carrasco, 

J. Ferrer, and G. Torres, “Effects of 

soiling on photovoltaic (pv) modules in 

the atacama desert,” Scientific Reports, 

vol. 8, p. 13943, Sep 2018. 

[10] K. K. Ilse, B. W. Figgis, V. Naumann, 

C. Hagendorf, and J. Bagdahn, 

“Fundamentals of soiling processes on 

photovoltaic modules,” Renewable and 

Sustainable Energy Reviews, vol. 98, pp. 

239–254, 2018. 

[11] D. Korkmaz and H. Acikgoz, “An 

efficient fault classification method in 

solar photovoltaic modules using transfer 

learning and multi-scale convolu- tional 

neural network,” Engineering 

Applications of Artificial Intelligence, 

vol. 113, p. 104959, 2022. 

[12] A. Ettaleby, Y. Chaibi, A. Allouhi, M. 

Boussetta, and M. Benslimane, “A 

combined convolutional neural network 

model and support vector machine 

technique for fault detection and 

classification based on 

electroluminescence images of 

photovoltaic modules,” Sustainable 

Energy, Grids and Networks, vol. 32, p. 

100946, 2022. 

 

 

47 


	3.MATERIALS AND METHODS
	4.DISCUSSION



